Robust portfolio selection based on a joint ellipsoidal uncertainty set

نویسنده

  • Zhaosong Lu
چکیده

‘Separable’ uncertainty sets have been widely used in robust portfolio selection models (e.g. see [E. Erdoğan, D. Goldfarb, and G. Iyengar, Robust portfolio management, manuscript, Department of Industrial Engineering and Operations Research, Columbia University, New York, 2004; D. Goldfarb and G. Iyengar, Robust portfolio selection problems, Math. Oper. Res. 28 (2003), pp. 1–38; R.H. Tütüncü and M. Koenig, Robust asset allocation, Ann. Oper. Res. 132 (2004), pp. 157–187]). For these uncertainty sets, each type of uncertain parameter (e.g. mean and covariance) has its own uncertainty set. As addressed in [Z. Lu, A new cone programming approach for robust portfolio selection, Tech. Rep., Department of Mathematics, Simon Fraser University, Burnaby, BC, 2006; Z. Lu, A computational study on robust portfolio selection based on a joint ellipsoidal uncertainty set, Math. Program. (2009), DOI: 10.1007/510107009-0271-z], these ‘separable’ uncertainty sets typically share two common properties: (1) their actual confidence level, namely, the probability of uncertain parameters falling within the uncertainty set, is unknown, and it can be much higher than the desired one; and (2) they are fully or partially box-type. The associated consequences are that the resulting robust portfolios can be too conservative, and moreover, they are usually highly non-diversified, as observed in the computational experiments conducted in [Z. Lu, A new cone programming approach for robust portfolio selection, Tech. Rep., Department of Mathematics, Simon Fraser University, Burnaby, BC, 2006; Z. Lu, A computational study on robust portfolio selection based on a joint ellipsoidal uncertainty set, Math. Program. (2009), DOI: 10.1007/510107-009-0271-Z; R.H. Tütüncü and M. Koenig, Robust asset allocation, Ann. Oper. Res. 132 (2004), pp. 157–187]. To combat these drawbacks, we consider a factor model for random asset returns. For this model, we introduce a ‘joint’ ellipsoidal uncertainty set for the model parameters and show that it can be constructed as a confidence region associated with a statistical procedure applied to estimate the model parameters. We further show that the robust maximum risk-adjusted return (RMRAR) problem with this uncertainty set can be reformulated and solved as a cone programming problem. The computational results reported in [Z. Lu, A new cone programming approach for robust portfolio selection, Tech. Rep., Department of Mathematics, Simon Fraser University, Burnaby, BC, 2006; Z. Lu, A computational study on robust portfolio selection based on a joint ellipsoidal uncertainty set, Math. Program. (2009), DOI: 10.1007/510107-009-0271-Z] demonstrate that the robust portfolio determined by the RMRAR model with our ‘joint’ uncertainty set outperforms that with Goldfarb and Iyengar’s ‘separable’ uncertainty set proposed in the seminal paper [D. Goldfarb and G. Iyengar, Robust portfolio selection problems, Math. Oper. Res. 28 (2003), pp. 1–38] in terms of wealth growth rate and transaction cost; moreover, our robust portfolio is fairly diversified, but Goldfarb and Iyengar’s is surprisingly highly non-diversified.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A computational study on robust portfolio selection based on a joint ellipsoidal uncertainty set

The “separable” uncertainty sets have beenwidely used in robust portfolio selection models [e.g., see Erdoğan et al. (Robust portfolio management. manuscript, Department of Industrial Engineering and Operations Research, Columbia University, New York, 2004), Goldfarb and Iyengar (Math Oper Res 28:1–38, 2003), Tütüncü and Koenig (Ann Oper Res 132:157–187, 2004)]. For these uncertainty sets, each...

متن کامل

A New Cone Programming Approach for Robust Portfolio Selection

The robust portfolio selection problems have recently been studied by several researchers (e.g., see [15, 14, 17, 25]). In their work, the “separable” uncertainty sets of the problem parameters (e.g., mean and covariance of the random returns) were considered. These uncertainty sets share two common drawbacks: i) the actual confidence level of the uncertainty set is unknown, and it can be much ...

متن کامل

Primal and dual robust counterparts of uncertain linear programs: an application to portfolio selection

This paper proposes a family of robust counterpart for uncertain linear programs (LP) which is obtained for a general definition of the uncertainty region. The relationship between uncertainty sets using norm bod-ies and their corresponding robust counterparts defined by dual norms is presented. Those properties lead us to characterize primal and dual robust counterparts. The researchers show t...

متن کامل

Robustness-based portfolio optimization under epistemic uncertainty

In this paper, we propose formulations and algorithms for robust portfolio optimization under both aleatory uncertainty (i.e., natural variability) and epistemic uncertainty (i.e., imprecise probabilistic information) arising from interval data. Epistemic uncertainty is represented using two approaches: (1) moment bounding approach and (2) likelihood-based approach. This paper first proposes a ...

متن کامل

A two-stage robust model for portfolio selection by using goal programming

In portfolio selection models, uncertainty plays an important role. The parameter’s uncertainty leads to getting away from optimal solution so it is needed to consider that in models. In this paper we presented a two-stage robust model that in first stage determines the desired percentage of investment in each industrial group by using return and risk measures from different industries. One rea...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Optimization Methods and Software

دوره 26  شماره 

صفحات  -

تاریخ انتشار 2011